
LXXV OLIMPIADA FIZYCZNA

ZAWODY II STOPNIA
CZĘŚĆ DOŚWIADCZALNA, 15.02.2026 r.

Za zadanie można otrzymać maksymalnie 40 punktów.

Masz do dyspozycji:

• statyw z poprzeczką,
• dwa ściski stolarskie,
• rurkę aluminiową,
• wstążkę,
• stalową nakrętkę,
• miarkę krawiecką,
• chusteczki higieniczne.

Wyznacz współczynnik tarcia statycznego oraz współczynnik tarcia kinetycznego pomiędzy rurką
a wstążką.

UWAGA 1: Dokładnie wyczyść rurkę przed wykonaniem pomiarów, zabrudzenia mogą znaczą-
co wpłynąć na wyniki.

UWAGA 2: Zwróć szczególną uwagę, aby do pomiarów wykorzystywać wstążkę, która nie
jest w widocznym stopniu przetarta – może to wpłynąć na wyniki! W razie potrzeby poproś
organizatorów o wymianę wstążki na nową.

UWAGA 3:W niektórych miejscach rurka może być nieznacznie porysowana. Staraj się używać
jak najmniej porysowanych fragmentów rurki.

UWAGA 4: W sytuacji, w której wiotka wstążka przylega do powierzchni bocznej walca i jest
naciągnięta po obu stronach nawinięcia, wyznaczenie siły tarcia pomiędzy wstążką a walcem
jest dosyć skomplikowane. Jeżeli jednak kąt owinięcia α (patrz rysunek poniżej) jest niewielki,
a siła tarcia jest niewielka w porównaniu z siłą naciągu, siłę tarcia można wyznaczyć zgodnie
z odpowiednim standardowym wzorem, gdzie siła nacisku wywierana przez wstążkę na walec
jest w przybliżeniu równa sile wypadkowej otrzymanej przez dodanie do siebie wektorów obu sił
naciągu. Przybliżenie to jest poprawne nawet wtedy, gdy wstążka przebiega skośnie względem
osi walca.

W rozwiązaniu zadania mogą Ci się przydać poniższe przybliżenia, poprawne gdy |x| ≪ 1:

(1 + x)α ≈ 1 + αx,

sin x ≈ x, cos x ≈ 1, tg x ≈ x.



Rozwiązanie

Jednym z najprostszych pomysłów na wykorzystanie elementów zestawu jest skonstruowanie
wahadła ze statywu, wstążki i nakrętki, gdzie nakrętka pełniła będzie rolę ciężarka. Oczywiście,
zadanie polega na znalezieniu odpowiednich współczynników tarcia, więc w układzie pomiaro-
wym powinno dojść do kontaktu pomiędzy wstążką i rurką. Kontakt taki można wprowadzić
do układu przez przyłożenie rurki do wstążki, na której wisi wahadło. Wówczas, po wytrąceniu
wahadła z najniższego położenia, wstążka i rurka będą o siebie trzeć. Schemat proponowanego
układu przedstawiony jest na Rysunku 1.
Warto zwrócić szczególną uwagę na fakt, że przyłożenie rurki powoduje zmianę płaszczyzny

drgań wahadła, tzn. najniższe położenie podpartego wahadła jest inne niż najniższe położenie
wahadła zwisającego swobodnie. W dalszej części rozwiązania odległość pomiędzy tymi dwoma
położeniami wahadła oznaczymy jako y. Wychylenie wahadła wzdłuż rurki będziemy natomiast
oznaczali jako x.

Rysunek 1: Schemat układu wahadła odchylonego za pomocą rurki. Na lewej części rysunku
widok układu „od przodu” z zaznaczonym wychyleniem wahadła x. Na prawej części rysunku
widok tego samego układu „z boku” z zaznaczonym odchyleniem wahadła y powstałym na skutek
przyłożenia rurki do wstążki

Wychylając wahadło można dokonać dwóch obserwacji. Gdy wahadło wychylimy nieznacz-
nie i puścimy je tak, aby nie poruszało się względem rurki, może okazać się, że wahadło nie
zacznie się samoistnie zsuwać pod wpływem siły grawitacji. Będzie to spowodowane statycznym
tarciem wstążki o rurkę. Gdy natomiast wychylenie wahadła będzie większe, wahadło zacznie
się poruszać pod wpływem grawitacji, a pomiędzy wstążką i rurką pojawi się tarcie kinetyczne.
Porównując ruch takiego wahadła do wahadła bez przyłożonej rurki można zauważyć, że siła
tarcia jest znacznie większa niż pozostałe siły oporów. Powyższe obserwacje wykorzystamy w
celu wyznaczenia współczynników tarcia statycznego i kinetycznego.
W opisie teoretycznym układu przyjmiemy założenia, które standardowo przyjmuje się do

opisu drgań wahadła matematycznego, tzn. wstążka jest nieważka i nierozciągliwa, a ciężarek



jest punktem materialnym. Co więcej, wahadło będziemy wychylać o małe kąty. Dodatkowo,
położenie rurki i długość wahadła zostaną dobrane w taki sposób, aby ciężarek znajdował się
jak najbliżej rurki (ale tak, aby w żadnym pomiarze nie zahaczał o rurkę).

Wyznaczenie współczynnika tarcia statycznego

Zgodnie z poczynioną wcześniej obserwacją, wyznaczenie współczynnika tarcia statycznego
będzie opierać się na znajdowaniu takiego największego wychylenia wahadła x, dla którego nie
zacznie się ono samoistnie zsuwać. Siła tarcia statycznego skierowana jest przeciwnie do sumy
pozostałych sił działających w układzie, a więc przeciwnie do kierunku, w którym wahadło
zacznie poruszać się po wytrąceniu z sytuacji statycznej. Ponieważ wahadło wychylone jest o
mały kąt, ruch ten w przybliżeniu będzie poziomy, a więc poziomy będzie również kierunek
działania sił tarcia.
Rozważmy siły działające na fragment wstążki przylegający do rurki. Poza siłą tarcia są to

siła reakcji rurki oraz dwie siły naciągu. W sytuacji statycznej może okazać się, że siły naciągu
różnią się co do wartości. Oznaczmy więc, że siła naciągu działająca od strony ciężarka to
N1, natomiast siła działająca od strony statywu to N2. Kierunek wektora siły reakcji rurki
będzie prostopadły do powierzchni kontaktu rurki i wstążki, a więc dla małego kąta nawinięcia,
podobnie jak siła tarcia, będzie w przybliżeniu poziomy. Schemat przedstawiający wahadło w
sytuacji statycznej znajduje się na Rysunku 2.

Rysunek 2: Schemat układu w sytuacji statycznej wraz z działającymi na wstążkę siłami (z
pominięciem siły reakcji rurki, która jest prostopadła do płaszczyzny rysunku)

Siła N2 musi równoważyć sumę siły N1, siły tarcia oraz siły reakcji rurki. Te trzy siły są z
kolei prostopadłe do siebie nawzajem. Oznacza to, że składowa siły N2 w kierunku zgodnym z
kierunkiem osi rurki musi równoważyć się z siłą tarcia. Stąd siła tarcia wynosi

Ts = N2
x

L
, (1)

gdzie L jest odległością pomiędzy punktem mocowania wstążki do statywu oraz puntem kontaktu
wstążki z rurką.
Z drugiej strony możemy skorzystać ze wskazówki podanej w Uwadze 3 i uzależnić wartość

siły nacisku wstążki na rurkę (a więc również siłę tarcia) od sił naciągu nici. Oznaczmy kąt
owinięcia wstążki wokół rurki jako α. Zauważmy, że kąt ten będzie taki sam jak kąt, o jaki



Rysunek 3: Na lewym rysunku schemat wahadła widzianego „z boku” wraz z przyjętymi w
rozwiązaniu oznaczeniami. Po prawej zbliżenie na fragment oznaczony na pierwszym rysunku
ramką wraz z rozrysowanymi siłami naciągu wstążki oraz siłą nacisku, którą wstążka wywiera
na rurkę

wahadło jest odchylone przez rurkę. Schemat układu z oznaczonymi kątami oraz siłami znajduje
się na Rysunku 3.
Po dodaniu do siebie wektorów obu sił naciągu i przemnożeniu przez współczynnik tarcia

statycznego fs otrzymujemy siłę tarcia

Ts = fsN2 sinα ≈ fsN2α ≈ fsN2
y

L
, (2)

gdzie α wyrażony jest w radianach, druga równość to przybliżenie podane w treści zadania,
natomiast ostatnia równość wynika z definicji kąta w mierze łukowej. Przyrównując do siebie
równania (1) i (2) otrzymujemy

N2
x

L
= fsN2

y

L
. (3)

Po przekształceniu daje to
x = fsy. (4)

Oznacza to, że maksymalne wychylenie przy którym wahadło nie zacznie się poruszać pod wpły-
wem siły grawitacji zależy tylko od y oraz współczynnika tarcia statycznego pomiędzy wstążką i
rurką. Jest to zależność, która umożliwi nam eksperymentalne wyznaczenie współczynnika tarcia
statycznego.

Wyznaczenie współczynnika tarcia kinetycznego

Przyjmijmy, że wahadło jest w ruchu. Na ruch ten wpływ mają siła grawitacji, siła naciągu
wstążki oraz siła tarcia kinetycznego. Kierunek działania siły tarcia jest przeciwny do wektora
prędkości wahadła. Jeżeli kąt wychylenia wahadła jest mały, to ruch ciężarka w pionie jest
znacznie mniejszy niż jego ruch w poziomie, zatem wektor prędkości (więc również wektor siły
tarcia) będzie w przybliżeniu poziomy. Co więcej, podobnie jak w przypadku statycznym, kąt
owinięcia wstążki wokół rurki będzie zależał wyłącznie od kąta α.



Ponownie korzystając ze wskazówki podanej w treści zadania możemy wyznaczyć zależność
pomiędzy siłą naciągu wstążki N (tym razem taką samą na całej długości wstążki) oraz siłą
nacisku F wywieraną na rurkę przez wstążkę. Dodając do siebie wektorowo siły naciągu po obu
stronach walca (patrz prawa część Rysunku 3) możemy wyznaczyć siłę nacisku jako

F = 2N sin
(
α

2

)
≈ Nα ≈ N y

L
, (5)

gdzie ponownie najpierw wykorzystano przybliżenie podane w treści zadania, a następnie defini-
cję kąta w mierze łukowej. W przybliżeniu ciężarek nie porusza się w kierunku pionowym, więc
siła naciągu wstążki musi równoważyć ciężar ciężarka, zatem

N = mg, (6)

gdzie m jest masą ciężarka, natomiast g to przyspieszenie ziemskie. Stąd otrzymujemy, że siła
tarcia kinetycznego w układzie wynosi

Tk = fkmg
y

L
, (7)

gdzie fk jest współczynnikiem tarcia kinetycznego.
Dla ustalonej wartości odchylenia y wartość tej siły jest stała. Oznacza to, że jeżeli jako A1

oraz A2 oznaczymy dwa kolejne maksymalne wychylenia wahadła, to podczas ruchu pomiędzy
nimi siła tarcia wykona pracę o wartości

W = (A1 + A2)Tk = (A1 + A2) fkmg
y

L
. (8)

Z położeniami A1 oraz A2 możemy również powiązać pewną energię potencjalną grawitacji. Je-
żeli dla wahadła w położeniu o minimalnej energii potencjalnej odległość pomiędzy punktem
przymocowania wstążki do statywu oraz punktem styku wstążki z rurką wynosi L, to po wychy-
leniu wahadła o x odległość pomiędzy tymi punktami wyniesie na mocy twierdzenia Pitagorasa√
L2 + x2. Wykorzystując pierwsze z przybliżeń podanych w treści zadania możemy więc wy-
znaczyć, że wychylenie wahadła o x powoduje wzrost jego energii potencjalnej o

E(x) = mg
(√
L2 + x2 − L

)
= mgL

√1 + x2
L2
− 1

 ≈ mgx2
2L
. (9)

Stąd zmiana energii wahadła przy zmianie amplitudy z A1 na A2 wynosi

∆E =
mgA21
2L
− mgA

2
2

2L
=
mg

2L
(A1 − A2) (A1 + A2) . (10)

Zmiana ta jest związana wyłącznie z pracą wykonaną przez tarcie

mg

2L
(A1 − A2) (A1 + A2) = (A1 + A2) fkmg

y

L
. (11)

Z tej równości wyznaczamy zależność pomiędzy zmianą amplitudy drgań oraz y

∆A = A1 − A2 = 2fky. (12)

Tę zależność można wykorzystać do pomiaru współczynnika tarcia kinetycznego.



Pierwszy pomysł na pomiar tarcia kinetycznego
Dla kolejnych wartości y będziemy puszczać wahadło z tego samego wychylenia początko-

wego A1. Na podstawie liczby półokresów wykonanych aż do zatrzymania się wahadła możemy
oszacować wartość ∆A. Jeżeli liczba takich półokresów wynosi n, to zmiana amplitudy na jeden
półokres wyniesie

∆A =
A1
n
. (13)

Zgodnie ze wzorem (12) wielkość ta powinna liniowo zmieniać się wraz z y, a współczynnikiem
kierunkowym tej zależności jest 2fk.

Drugi pomysł na pomiar tarcia kinetycznego
Alternatywnie można dla kolejnych wartości y dobierać wartość A1 w taki sposób, żeby

wahadło zatrzymało się dokładnie w położeniu o minimalnej energii potencjalnej ani razu go
nie przekraczając (czyli A2 = 0). Wówczas równanie (12) upraszcza się do zależności liniowej
pomiędzy A1 oraz y.

Układ pomiarowy i wyniki pomiarów

Jeden koniec wstążki przywiązano do poprzeczki statywu, natomiast do drugiego końca przy-
wiązano stalową nakrętkę. Za pomocą ścisków stolarskich do krawędzi stołu przymocowano rurkę
aluminiową w taki sposób, że możliwe było oparcie wstążki o rurkę bez zahaczania o stół. Wstąż-
ka została przywiązana do statywu i nakrętki w taki sposób, aby nakrętka nie zahaczała o rurkę
w czasie wykonywania pomiarów, ale w taki sposób, żeby odległość pomiędzy rurką i nakrętką
była możliwie mała.
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Rysunek 4: Wykres z punktami pomiarowymi, dopasowaną zależnością liniową oraz prostymi
skrajnymi



Za pomocą takiego układu wykonano pomiary pozwalające na wyznaczenie obu współczyn-
ników tarcia. Zmianę wartości y realizowano przez przesuwanie miejsca przywiązania wstążki do
statywu wzdłuż poprzeczki. Przed każdym pomiarem rurka została przetarta za pomocą chu-
steczek higienicznych. Wyniki pomiarów pozwalających na wyznaczenie współczynnika tarcia
statycznego przedstawiono na Rysunku 4.
Dokładne wykonanie tych pomiarów może okazać się wyzwaniem ze względu na możliwość

przejścia tarcia statycznego w kinetyczne nawet przy najdrobniejszym drganiu ciężarka, a to z
kolei może w znacznym stopniu utrudnić pomiar granicznej wartości x. Co więcej, jakakolwiek
niedokładność przy zmianie wartości y może spowodować zmianę położenia minimum energii
potencjalnej względem rurki, a więc także wpłynie na pomiar wychylenia x. W celu ograniczenia
niepewności pomiarowych dla każdej wartości y wykonano dwa pomiary, po jednym dla wahadła
wychylonego w lewo i w prawo. Za wartość x przyjęto średnią arytmetyczną z takich dwóch
pomiarów. Ze względu na wymienione wyżej trudności, za niedokładność pomiarową x przyję-
to 5 mm. Za niedokładność pomiaru y przyjęto dokładność podziałki na miarce, czyli 1 mm.
Otrzymana wartość współczynnika tarcia statycznego wynosi fs = 0, 19± 0, 03.
Następnie wykonano pomiary tarcia kinetycznego. Wykorzystano w nich pierwszą z zapro-

ponowanych w części teoretycznej metod. Wyniki tych pomiarów wraz z dopasowaną do nich
prostą znajdują się na Rysunku 5.
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Rysunek 5: Wykres z punktami pomiarowymi, dopasowaną zależnością liniową oraz prostymi
skrajnymi

Do punktów pomiarowych dopasowano funkcję liniową zgodną ze wzorem (12). Za niedo-
kładność pomiaru wartości y przyjęto 1 mm, natomiast niedokładność pomiaru ∆A obliczono
jako zmianę której uległaby wartość ∆A gdyby n zmieniło się o 1. O ile sam pomiar wartości n
jest dokładny, o tyle możliwa jest sytuacja, że zmiana wartości x w granicy niepewności pomia-
rowej (tutaj przyjętej za 1 mm) może spowodować zmianę n. Jest to szczególnie istotne, gdy n
jest małe, wówczas oszacowanie na ∆A wynikające ze wzoru (13) jest niedokładne. Otrzymana
wartość współczynnika tarcia kinetycznego wynosi fk = 0, 17± 0, 02.


