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Za każde zadanie można otrzymać maksymalnie 20 punktów.

Zadanie 1

Baron Münchhausen postanowił wznieść się jak naj-
wyżej wykorzystując armatkę wystrzeliwującą piono-
wo w górę pocisk o masie m z prędkością v0. Baron
trzyma w rękach kołowrotek z częściowo nawiniętą
nierozciągliwą, wiotką, nieważką liną, której drugi ko-
niec jest przymocowany do pocisku. Kołowrotek ma
wbudowany hamulec powodujący, że w trakcie rozwi-
jania liny jej naprężenie wynosi N0 (gdy naprężenie
jest mniejsze od N0 lina się nie rozwija, a długość roz-
winiętej części pozostaje stała). Początkowa długość
rozwiniętej części liny wynosi l0. Barona potraktuj ja-
ko bryłę sztywną o masie M .

Na jaką maksymalną wysokość wzniesie się baron, za-
kładając, że całkowita długość liny jest wystarczająco
duża. Dodatkowo wyznacz ciepło, jakie wydzieli się na
kołowrotku w trakcie wznoszenia się barona.

Pomiń rozmiary liniowe barona, armatki i pocisku
oraz opór powietrza. Przyspieszenie ziemskie wynosi
g. Początkowo baron znajduje się tuż obok armatki;
zakładamy, że pocisk nie uderza w niego.

Podaj wyniki liczbowe dla m = 10 kg, M = 80 kg,
l0 = 5 m, v0 = 200 m/s, N0 = 8000 N. Przyjmij
g = 9,81 m/s2.

Zadanie 2

Wykonana z przewodnika o oporności na jednost-
kę długości λ, sztywna ramka w kształcie kwadratu
o wierzchołkach OPRS i boku długości a znajduje się
w prostopadłym do jej powierzchni zewnętrznym, sta-
łym polu magnetycznym o indukcji B. Ramka styka
się z prostoliniowym przewodnikiem (prętem) o dłu-
gości 2a, o oporności na jednostkę długości również
λ. Jeden koniec pręta jest zamocowany przegubowo
w rogu ramki O, a punkt styku pręta z ramką przesu-
wa się po boku RP z prędkością v, w kierunku wierz-
chołka P, patrz rysunek.

Rozważając chwilę, gdy punkt styku pręta z ramką
znajduje się w odległości x od wierzchołka P, wy-
znacz:

a) natężenie prądu płynącego przez część pręta
znajdującą się wewnątrz ramki;

b) moc niezbędną do obracania pręta.

Pomiń pole magnetyczne pochodzące od prądów pły-
nących w rozważanym obwodzie i opory elektryczne
w miejscach styku pręta z ramką. Pomiń też masę
pręta oraz tarcie i inne opory mechaniczne.

Zadanie 3

Rozważmy uproszczony model efektu cieplarnianego.
Planeta o promieniu r krąży po kołowej orbicie o pro-
mieniu R ≫ r wokół gwiazdy o promieniu znacz-
nie mniejszym od R, emitującej izotropowo (tzn. jed-
nakowo we wszystkich kierunkach) promieniowanie
o całkowitej mocy Pg. Atmosferę planety modelujemy
poprzez n cienkich, sferycznych powłok termicznych
(nazywanych w astrofizyce „szklanymi”), współśrod-
kowych z planetą, patrz rysunek (proporcje nie są za-
chowane).

Przyjmujemy następujące założenia:

1. Promieniowanie planety, powłok oraz gwiazdy
jest promieniowaniem ciała doskonale czarnego.

2. Gwiazda jest znacząco bardziej gorąca, niż po-
włoki oraz planeta, co jest uwzględnione w na-
stępnym punkcie.

3. Powłoki są całkowicie przezroczyste dla promie-
niowania wysyłanego przez gwiazdę (w większo-
ści widzialnego), a jednocześnie całkowicie ab-
sorbują promieniowanie (w większości podczer-
wone) wysyłane przez sąsiednie powłoki, oraz –



w przypadku pierwszej powłoki – przez plane-
tę. Powłoki są również całkowicie przezroczyste
dla promieniowania gwiazdy odbitego od plane-
ty (odbicie zachodzi bez zmiany długości fali).

4. Planeta całkowicie absorbuje promieniowanie
(w większości podczerwone) pochodzące od
znajdującej się nad nią powłoki, natomiast od-
bija ułamek A promieniowania (w większości
widzialnego) pochodzącego od gwiazdy. Resztę
promieniowania pochodzącego od gwiazdy pla-
neta absorbuje.

5. Planeta oraz powłoki idealnie przewodzą cie-
pło. Przestrzenie między poszczególnymi sfera-
mi i między wewnętrzną sferą a planetą nie prze-

wodzą ciepła.

6. Powłoki znajdują się bardzo blisko siebie i bli-
sko planety – odległość między górną powłoką
a powierzchnią planety jest zaniedbywalnie ma-
ła w porównaniu z promieniem planety.

Wyznacz ogólny wzór na równowagową temperaturę
planety.
Podaj wynik liczbowy dla Pg = 3,8 · 1026 W, r =
6 · 106 m, R = 1011 m, n = 120, A = 0,8.
Moc promieniowania emitowanego przez powierzchnię
S ciała doskonale czarnego o temperaturze T wynosi
P = σST 4, gdzie σ = 5,67 · 10−8 W/(m2 K4) jest
stałą Stefana-Boltzmanna.
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Rozwiązanie zadania 1

Po osiągnięciu przez pocisk wysokości l0 lina zostaje napięta, a siła naprężenia podrywa barona
do góry, jednocześnie spowalniając wznoszenie się pocisku.

Prędkość pocisku v1 tuż przed osiągnięciem wysokości l0 można wyznaczyć z zasady zachowania
energii

1
2
mv20 = mgl0 +

1
2
mv21, (1)

zatem
v1 =

√
v20 − 2gl0. (2)

Oczywiście jeśli
v20 < 2gl0, (3)

to baron sie nie wzniesie, gdyż lina nie zostanie naprężona – pocisk wzniesie się tylko na wysokość
mniejszą od l0 (równą v20/(2g)).

Po naprężeniu liny, na barona działa lina oraz grawitacja; siła wypadkowa jest równa

F1B = N0 −Mg. (4)

Ponieważ ta siła jest stała, prędkość vB oraz wysokość yB barona w zależności od czasu t są dane
wzorami

vB =
(
N0
M
− g

)
(t− t1) , (5)

yB =
1
2

(
N0
M
− g

)
(t− t1)2 , (6)

gdzie t1 jest chwilą, gdy pocisk osiągnie wysokość l0.

Na pocisk również działa siła napięcia liny oraz siła grawitacji, mają one zgodne zwroty; siła
wypadkowa jest równa

F1P = −N0 −mg. (7)

Prędkości vP oraz wysokość yP pocisku w zależności od czasu t są dane wzorami

vP = v1 −
(
N0
m
+ g

)
(t− t1) , (8)

yP = l0 + v1 (t− t1)−
1
2

(
N0
m
+ g

)
(t− t1)2 . (9)
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Lina będzie się rozwijała z kołowrotka, a zatem naprężenie nici będzie niezerowe do momentu
gdy prędkości barona oraz pocisku się zrównają. Nastąpi to w chwili t2 spełniającej warunek
vB(t2) = vP(t2), czyli (

N0
M
− g

)
(t2 − t1) = v1 −

(
N0
m
+ g

)
(t2 − t1) . (10)

Stąd
t2 − t1 =

v1
N0/M +N0/m

. (11)

Zauważmy, że w powyższym wzorze wielkość w mianowniku odpowiada względnemu przyspie-
szeniu barona i pocisku, równemu N0/µ, gdzie µ =Mm/(M +m) jest tzw. masą zredukowaną.

W chwili t2 baron znajduje się na wysokości yB2 równej

yB2 =
1
2

(
N0
M
− g

)
(t2 − t1)2 = (12)

=
1
2

(
N0
M
− g

)
v21

N20 (1/M + 1/m)
2 ,

a jego prędkość wynosi

vB2 =
(
N0
M
− g

)
v1

N0 (1/M + 1/m)
. (13)

W tym samym momencie pocisk znajduje się na wysokości

yP2 = l0 + v1 (t2 − t1)−
1
2

(
N0
m
+ g

)
(t2 − t1)2 = (14)

= l0 +
v21

N20 (1/M + 1/m)
2

(
N0 (1/M + 1/m)−

1
2

(
N0
m
+ g

))
.

Dla t > t2 na barona działa tylko siła grawitacji, czyli porusza się on z przyspieszeniem równym
−g. Maksymalną wysokość baron osiągnie, gdy jego prędkość będzie równa 0, czyli w chwili t3
spełniającej warunek

t3 − t2 =
vB2
g
= (15)

=
(
N0
M
− g

)
v1

gN0 (1/M + 1/m)
. (16)

Ostatecznie zatem maksymalna wysokość, na jaką wzniesie się baron, jest równa

ymax = yB2 + vB2 (t3 − t2)−
1
2
g (t3 − t2)2 = (17)

=
1
2

(
N0
M
− g

)
v21

N20 (1/M + 1/m)
2 +
1
2

(
N0
M
− g

)2 v21
gN20 (1/M + 1/m)

2 (18)

=
1
2

(
N0
M
− g

)
v21

N20 (1/M + 1/m)
2
N0
M

(19)

=
N0
2Mg

(
N0
M
− g

)
v20 − 2gl0

N20 (1/M + 1/m)
2 . (20)
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przy czym jest ona osiągana tylko, jeśli są spełnione warunki v20 > 2gl0 oraz N0 > Mg; w prze-
ciwnym razie ymax = 0 m.

Dla m = 10 kg, M = 80 kg, l0 = 5 m, v0 = 200 m/s, N0 = 8000 N otrzymamy

ymax = 22,6 m, (21)

Ciepło wydzielano w trakcie podciągania barona jest równe sile hamującej linę (czyli naprężeniu
liny) pomnożonej przez wydłużenie nienawiniętej jej części, czyli

Q = N0 ((yP2 − yB2)− l0) = (22)

=
1
2

v21
1/M + 1/m

. (23)

Wydłużenie ∆l nienawiniętej części liny można też wyznaczyć zauważając, że w chwili t1 prędkość
względna pocisku i barona wynosi v1, przyspieszenie względne jest równe N0 (1/M + 1/m) a
t2 − t1 jest dane wzorem (11). Otrzymamy

∆l = v1 (t2 − t1)−
N0 (1/M + 1/m)

2
(t2 − t1)2 =

=
v21

2N0 (1/M + 1/m)
.

Zatem znowu

Q =
1
2

v21
1/M + 1/m

. (24)

Zauważmy, że jest to energia ruchu względnego pocisku i barona w chwili t1 – ponieważ końcowa
prędkość ruchu względnego jest równa 0, cała ta energia jest zamieniana na ciepło.

Dla podanych danych liczbowych otrzymujemy

Q = 177 kJ. (25)

Energia kinetyczna wystrzelonego pocisku wynosi

1
2
mv20 = 200 kJ,

zatem większość z tej energii jest zamieniana na ciepło, a nie na wzniesienie barona.

Rozwiązanie zadania 2

Prędkość zmiany powierzchni „zakreślanej” przez część pręta znajdującą się wewnątrz ramki jest
równa

dS
dt
=
1
2
va. (26)

Powyżej współczynnik 1/2 jest konsekwencją tego, że tylko górny (zgodnie z rysunkiem) punkt
styczności pręta z ramką się przesuwa, a więc zakreślana w krótkim czasie powierzchnia ma
kształt trójkątny. Zatem zgodnie z prawem Faradaya w pierwszym obwodzie (składającym się
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z części ramki po lewej stronie pręta oraz części pręta znajdującej się wewnątrz ramki) indukuje
się siła elektromotoryczna

E1 = −
vaB

2
, (27)

natomiast w drugim obwodzie (składającym się z części ramki po prawej stronie pręta oraz części
pręta znajdującego się wewnątrz ramki) siła elektromotoryczna

E2 =
vaB

2
= −E1. (28)

Oznaczmy przez R1 opór elektryczny części ramki po lewej stronie pręta, przez R2 opór elek-
tryczny części ramki po prawej stronie pręta, a przez r opór części pręta między punktami styku
z ramką. Mamy

R1 = (3a− x)λ, (29)
R2 = (a+ x)λ, (30)
r =

√
a2 + x2λ, (31)

gdzie
√
a2 + x2 jest długością części pręta między punktami styczności z ramką.

Oznaczmy przez I1 natężenie prądu płynącego w lewej części ramki (np. od wierzchołka S do
wierzchołka R), przez I2 natężenie prądu płynącego w prawej części ramki (np. od wierzchołka P
do wierzchołka O), a przez I – natężenie prądu płynącego przez pręt (od punktu styku z ramką
do wierzchołka O). Ponieważ ładunek nie gromadzi się w punktach styczności, zachodzi

I = I1 − I2. (32)

Suma napięć na wszystkich elementach danego obwodu jest równa odpowiedniej sile elektromo-
torycznej, czyli

E1 = I1R1 + Ir, (33)
E2 = I2R1 − Ir. (34)

Uwzględniajac tutaj wzory na I i E2 otrzymamy

E1 = I1 (R1 + r)− I2r, (35)
−E1 = I2 (R2 + r)− I1r. (36)

Po rozwiązaniu powyższego układu równań otrzymamy

I1 =
R2

R1R2 + (R1 +R2) r
E1, (37)

I2 = −
R1

R1R2 + (R1 +R2) r
E1. (38)

Ostatecznie szukane natężenie prądu płynącego przez pręt wynosi

I =
R1 +R2

R1R2 + (R1 +R2) r
E1. (39)
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W jawnej postaci mamy

I = − 2va2B(
(3a− x) (a+ x) + 4a

√
a2 + x2

)
λ
. (40)

Na część pręta, przez którą płynie prąd działa siła elektrodynamiczna równa IBl, gdzie l =√
a2 + x2 jest długością tej części. Ze względu na jednorodny rozkład tej siły wzdłuż długości
pręta pochodzący od niej moment siły względem punktu O jest taki, jakby siła elektrodynamicz-
na była przyłożona w połowie rozważanej części pręta (co oznacza, że ramię siły wynosi l/2).
Otrzymujemy zatem wzór na moment siły

M = −1
2
IBl2. (41)

Ponieważ prędkość kątowa obrotu pręta wynosi

ω =
va

l2
, (42)

szukana moc jest równa

P = Mω = −IBva
2
= (43)

=
v2a3B2(

(3a− x) (a+ x) + 4a
√
a2 + x2

)
λ
. (44)

Zauważmy, że ponieważ nie ma dodatkowych sił oporu, a pręt jest nieważki, cała praca wykony-
wana na obracanie pręta jest zamieniana na ciepło generowane przez płynące w obwodzie prądy.
To oznacza, że

P = R1I21 +R2I
2
2 + rI

2.

Podstawiając wyrażenia na I1, I2 oraz I, a następnie na E1, otrzymamy

P = R1

(
R2

R1R2 + (R1 +R2) r
E1
)2
+R2

(
R1

R1R2 + (R1 +R2) r
E1
)2
+

+ r
(

R1 +R2
R1R2 + (R1 +R2) r

E1
)2

= E21
R1 +R2

R1R2 + (R1 +R2) r
.

Korzystając ze wzorów (27), (29)-(31) otrzymamy stąd wzór (44).

Rozwiązanie zadania 3

Ponumerujmy powłoki od wewnętrznej (numer 1) do zewnętrznej (numer n), oznaczmy tempe-
raturę i–tej powłoki przez Ti, a temperaturę planety przez T0. Rozważmy na początku układ
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składający się z planety oraz wszystkich n powłok. Całkowita moc dostarczana do tego układu
przez promieniowanie z zewnątrz (tzn. promieniowanie gwiazdy) jest równa

Pin = (1− A) ·
Pg
4πR2

· πr2 = (1− A) · Pg
r2

4R2
. (45)

Powyżej Pg/(4πR2) jest natężeniem (mocą na jednostkę powierzchni) promieniowania w odle-
głości R od środka gwiazdy, natomiast πr2 jest prostopadłym do kierunku tego promieniowania
polem powierzchni rozważanego układu. Wykorzystaliśmy tutaj fakt, że powłoki całkowicie prze-
puszczają promieniowanie emitowane przez gwiazdę i że planeta pochłania (1 − A) padającego
na nią promieniowania gwiazdy. Całkowita moc emitowana na zewnątrz przez rozważany układ
równa jest mocy wypromieniowywanej na zewnątrz przez zewnętrzną powłokę

Pout = 4πr2σT 4n . (46)

W rozważanym bilansie nie wzięliśmy pod uwagę promieniowania planety i wewnętrznych po-
włok, gdyż promieniowanie to jest absorbowane przez powłoki, a więc nie wychodzi poza rozwa-
żany układ. Zauważmy również, że odbite od planety promieniowanie gwiazdy nie jest rozważane
w tym bilansie, gdyż powłoki są przezroczyste dla promieniowania odbitego. Z przyrównania mo-
cy emitowanej i absorbowanej układu planeta + powłoki otrzymujemy

Tn =
4

√
(1− A)Pg
16πσR2

. (47)

Zauważmy, że taka właśnie byłaby temperatura planety gdyby nie było powłok. Rozważmy teraz
układ składający się z planety i k powłok leżących najbliżej niej, przy czym k < n. Moc wypro-
mieniowywana przez taki układ do otoczenia jest równa mocy wypromieniowywanej na zewnątrz
przez zewnętrzną powłokę, a więc

Pout,k = 4σπr2T 4k . (48)

Moc dostarczana do rozważanego układu równa jest sumie mocy promieniowania gwiazdy ab-
sorbowanego przez planetę i promieniowania emitowanego do wewnątrz przez powłokę k + 1,
a więc

Pin,k = 4σπr2T 4k+1 + (1− A)Pg
r2

4R2
. (49)

Powyższe równania są również poprawne, gdy przyjmiemy k = 0 – opisują one wtedy promienio-
wanie emitowane i absorbowane przez samą planetę. Przyrównując Pout,k do Pin,k, otrzymujemy

T 4k+1 = T
4
k −
(1− A)Pg
16σπR2

, (50)

dla k = 0, 1, ..., n−1. Oznacza to, że czwarte potęgi temperatury planety i temperatur kolejnych
powłok tworzą ciąg arytmetyczny, a więc

T 40 = T
4
n + n

(1− A)Pg
16σπR2

, (51)

co po uwzględnieniu wzoru na Tn prowadzi do następującego wyrażenia na szukaną temperaturę
planety

T0 =
4

√
(n+ 1)

(1− A)Pg
16πσR2

. (52)

Po wstawieniu danych liczbowych otrzymujemy

T0 ≈ 754 K. (53)

Użyte w zadaniu parametry w dobrym przybliżeniu opisują Wenus. Duża wartość n spowodowana
jest wyjątkowo grubą i gęstą atmosferą tej planety.
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